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Abstract

Two strings of the same length are order-isomorphic when they have the same relative orders. By

utilizing the concept of order-isomorphism, various types of time series data, such as stock prices,

energy consumption, annual temperature variance, and music melody, can be effectively analyzed.

To perform a more meaningful analysis of time series data, approximate criteria for the order-

isomorphism are necessary, considering diverse types of errors. In this paper, we introduce a novel

approximation criterion for the order-isomorphism, called the partitioned order-isomorphism. We

then propose an efficient O(n+sort(m))-time algorithm for the order-preserving pattern matching

problem considering the criterion of partition.
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1. Introduction

Two strings of the same length are order-isomorphic when they have the same relative orders.

For example, strings X = (5, 9, 7) and Y = (23, 51, 47) are order-isomorphic because the relative

order of individual characters in both strings is the same as (1, 3, 2). Given a text T of length n

and a pattern P of length m, the order-preserving pattern matching (OPPM) problem is finding

all substrings of T which are order-isomorphic to P . The OPPM problem can be solved in O(n+

sort(m)) time [1, 2, 3] based on the KMP algorithm [4], where sort(m) is time for sorting P .

Practical algorithms for the OPPM problem using the Horspool approach and a filtration method
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have been studied [5, 6]. Also, the order-preserving string regularities [7] and the order-preserving

suffix trees [8] have been studied.

There has been vigorous study on approximate OPPM. To effectively analyze various types

of time series data, such as stock prices, energy consumption, annual temperature variance, and

music melody, OPPM can be applied. However, it is not always easy to apply OPPM algorithms

directly due to various factors such as differences in the measurement intervals of time series

data, noise occurring in the measurement process, errors in the data transformation process, etc.

Therefore, to perform a more meaningful pattern search, prediction, and analysis of time series

data, approximate OPPM is necessary, considering diverse types of errors. Gawrychowski and

Uznański [9] and Chhabra et al. [10] studied the OPPM problem with k-mismatches. Recently,

Kim et al. [11] defined a scaling approximation and presented algorithms to solve the scaling

approximation pattern matching problem.

In some cases in OPPM, it might be more effective to compare two strings part by part rather

than as whole strings. Consider two strings x = (1, 8, 3, 7, 5, 6, 4, 2) and y = (3, 24, 8, 21, 15, 27, 12, 6)

for example. The orders of these two strings are quite different, with (1, 8, 3, 7, 5, 6, 4, 2) and

(1, 7, 3, 6, 5, 8, 4, 2), respectively. Despite their overall differences in order, however, when x and

y are divided at the fifth position, the orders of the two divided parts of x and y are the same

with (1, 5, 2, 4, 3) and (3, 2, 1), respectively, i.e., the two respective parts match each other. This

approach can be applied to plagiarism detection in music melodies.

In this paper, we introduce a novel approximation criterion for the order-isomorphism, called

the partitioned order-isomorphism. Then we define the OPPM problem with partition and propose

an efficient algorithm for the problem using the Z-function [7, 12]. Our algorithm runs in O(n +

sort(m)) time which are identical to the algorithms [1, 2, 3] for the exact OPPM problem.

This paper is organized as follows. In Section 2, we give some preliminary works. In Section 3,

we first define the partitioned order-isomorphism and the OPPM problem with partition formally.

And then we give an efficient algorithm for the OPPM problem with partition. In Section 4, we

conclude.
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Table 1: Location tables and Z for X = (5, 11, 18, 7, 3, 9)

i 1 2 3 4 5 6

X[i] 5 11 18 7 3 9

LMaxX [i] −1 1 2 1 −1 4

LMinX [i] −1 −1 −1 2 1 2

Z(X) 6 2 1 1 2 1

2. Preliminaries

Let Σ denote the set of characters where two characters can be compared in constant time. A

string S is a sequence of characters drawn from Σ. We denote by |S| the length of S and by S[i]

the ith character of S (1 ≤ i ≤ |S|). The substring S[i] · · ·S[j] (1 ≤ i, j ≤ |S|) is denoted by S[i..j]

and S[i..j] is an empty string when i > j. Substrings S[1..i] and S[i..|S|] (1 ≤ i ≤ |S|) are called

a prefix and a suffix of S, respectively. The concatenation of two strings X and Y is denoted by

XY . For convenience, we assume that characters in a string are all distinct as in [1].

Two strings X and Y of the same length are order-isomorphic, denoted by X ≈ Y , when

X[i] < X[j] ⇔ Y [i] < Y [j] for all 1 ≤ i, j ≤ |X|. Obviously, the following lemma and corollary

hold by the definition of the order-isomorphism.

Lemma 1. For two strings X and Y of the same length, if X and Y are order-isomorphic, sub-

strings X[i..j] and Y [i..j] (for all 1 ≤ i ≤ j ≤ |X|) are also order-isomorphic.

Corollary 2. For two strings X and Y of the same length, if there exist substrings X[i..j] and

Y [i..j] (1 ≤ i ≤ j ≤ |X|) which are not order-isomorphic, X and Y are not order-isomorphic.

The order-isomorphism can be efficiently determined using the nearest neighbor representa-

tion [5, 1, 3, 2], which is represented by the location tables LMaxX and LMinX .

LMaxX [i] =

 j if X[j] = max{X[k] : X[k] < X[i], 1 ≤ k ≤ i− 1}

−1 if there is no such j

LMinX [i] =

 j if X[j] = min{X[k] : X[k] > X[i], 1 ≤ k ≤ i− 1}

−1 if there is no such j
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That is, LMaxX [i] and LMinX [i] are the nearest neighbors of X[i] in the sorted sequence of

characters in X[1..i]. Table 1 shows LMaxX and LMinX for X = (5, 11, 18, 7, 3, 9). The locations

tables can be computed in O(|X| log |X|) time using a sorting algorithm or an order-statistic tree.

Using the location tables for X, we can determine the order-isomorphism of X and Y in O(|X|)

time by checking the following inequality for every position 1 ≤ i ≤ |X|:

Y [LMaxX [i]] < Y [i] < Y [LMinX [i]]. (1)

(If LMaxX [i] or LMinX [i] is equal to −1, we assume the respective inequality is true.) Also, we

can find the longest prefix β of Y which is order-isomorphic to a prefix of X in O(|β|) time by

checking the above inequality in increasing order of i until we reach a position where the inequality

is false.

For a string S, the Z-function Zi(S) (1 ≤ i ≤ |S|) represents the length of the longest prefix of

S[i..|S|] which is order-isomorphic to a prefix of S [7]. It is a modified version for order-isomorphism

of the Z-function introduced in [12] to solve classical string matching problems. With the nearest

neighbor representation of S, Z(S) can be computed in O(|S|) time.

3. Order-preserving pattern matching with partition

In this section, we define order-preserving pattern matching problem with partition and present

an efficient algorithm for solving the problem.

3.1. Problem Definition

We define the partitioned order-isomorphism. Let us consider two strings X = (5, 11, 18, 7, 3, 9)

and Y = (1, 2, 3, 5, 4, 6), which are not order-isomorphic. When we partition X (resp. Y ) into

two substrings X[1..3] and X[4..6] (resp. Y [1..3] and Y [4..6]), the partitioned substrings of X are

order-isomorphic to those of Y , i.e., X[1..3] ≈ Y [1..3] and X[3..6] ≈ Y [3..6]. Then, we say that

X is partitioned order-isomorphic to Y . That is, the partitioned order-isomorphism is formally

defined as follows.

Definition 1. For two strings X and Y of length m and a position t (1 ≤ t ≤ m), if X[1..t] ≈

Y [1..t] and X[t+1..m] ≈ Y [t+1..m], then X and Y are partitioned order-isomorphic at t, denoted

by X≈t
⊢Y . If there exists any position t such that X≈t

⊢Y , then X and Y are partitioned order-

isomorphic.
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In the example above, X≈3
⊢Y since X[1..3] ≈ Y [1..3] and X[3..6] ≈ Y [3..6]. However, X is not

partitioned order-isomorphic to Z = (1, 2, 3, 4, 5, 6) because there exists no t such that X≈t
⊢Z. We

call position t a partition position. (Although we consider the cases when a string is partitioned

into two substrings, Definition 1 can be easily extended to the cases of partitioning into more than

two substrings.)

The following lemma shows that partition positions are consecutive.

Lemma 3. For two strings X and Y of length m, let lmax be the largest l such that X[1..l] ≈ Y [1..l]

(1 ≤ l ≤ m). Similarly, let rmin be the smallest r such that X[r..m] ≈ Y [r..m] (1 ≤ r ≤ m). Then,

X≈t
⊢Y if and only if rmin − 1 ≤ t ≤ lmax.

Proof. Note that lmax and rmin always exist since two strings of length 1 are order-isomorphic.

(⇒) We show by contradiction that if X≈t
⊢Y , rmin − 1 ≤ t ≤ lmax. Suppose that X≈t

⊢Y for

some t such that t < rmin − 1 or t > lmax. Consider the case when t > lmax. Since X≈t
⊢Y ,

X[1..t] ≈ Y [1..t], which contradicts the definition of lmax. Similarly, a contradiction occurs when

t < rmin − 1.

(⇐) We show that X≈t
⊢Y if rmin − 1 ≤ t ≤ lmax. Since X[1..lmax] ≈ Y [1..lmax] and t ≤ lmax,

X[1..t] ≈ Y [1..t] by Lemma 1. Similarly, X[t+ 1..m] ≈ Y [t+ 1..m]. Therefore, X≈t
⊢Y .

Corollary 4. If lmax < rmin − 1, X and Y are not partitioned order-isomorphic.

The order-preserving pattern matching problem with partition is to find all substrings of a text

T that is partitioned order-isomorphic to a pattern P , formally defined as follows.

Problem 1. The order-preserving pattern matching (OPPM) problem with partition.

Input: A text T of length n and a pattern P of length m (n ≥ m).

Output: Every pair (i, [a : b]) where i is a position in T (1 ≤ i ≤ n − m + 1) and [a : b] is a

position range in P (1 ≤ a ≤ b ≤ m) such that T [i..i+m− 1]≈t
⊢P for all a ≤ t ≤ b.

For example, given T = (13, 92, 34, 88, 77, 63, 37, 40, 70, 54, 35, 24) and P = (54, 12, 38, 69, 45, 22),

the output is (2, [3 : 3]) and (6, [2 : 5]).

3.2. An algorithm for the OPPM problem with partition

Let Ti denote the substring of T of length m starting at position i, i.e., Ti = T [i..i + m − 1]

(1 ≤ i ≤ n−m+ 1). Let Li and Ri be the length of the longest prefix and the longest suffix of Ti
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which are order-isomorphic to a prefix and a suffix of P , respectively. When we are given Li’s and

Ri’s for all 1 ≤ i ≤ n−m+ 1, we can solve Problem 1 in O(n) time by Lemma 3 and Corollary 4.

(Note that Li is lmax and Ri is m− rmin + 1 for Ti and P .)

Now we focus on the problem of computing all Li’s. (We omit the details of computing Ri’s

since it can be computed using the same way by considering reversed strings of T and P .) Using

the nearest neighbor representation of P , we can compute each Li in O(m) time, resulting in a total

time complexity of O(nm+m logm), where O(m logm) represents the time required for computing

the nearest neighbor representation LMaxP and LMinP of P . More efficiently, we can compute

all Li’s in O((n + m) log(n + m)) time by concatenating P and T (say S = PT ) and computing

Z(S).

However, we can improve the time complexity to O(n + m logm) time by computing Z(P )

and all Li’s separately. We first preprocess P for computing LMaxP , LMinP , and Z(P ). Then,

we compute Li in increasing order of i using Z(P ) and Lj (1 ≤ j < i), which is similar to the

Z-algorithm in [12]. For any position k (1 ≤ k ≤ n), the L-box starting at k is defined as the

range (k, k + Lk − 1) of length Lk. (Note that Lk > 0 because the first characters of two strings

are trivially order-isomorphic). For each i (1 ≤ i ≤ n), let (li, ri) be the L-box whose end position

is the rightmost among the L-boxes whose start position is less than or equal to i. (If more than

one L-box has the rightmost end position, we may choose any L-box.)

At each iteration i (1 ≤ i ≤ n−m+ 1), we compute Li and (li, ri) using (li−1, ri−1). Initially,

we set (l0, r0) = (0, 0). The details of each iteration i is as follows.

1. If i > ri−1, then compute Li by explicitly checking the inequality (1) for Ti (= T [i..i+m−1])

and P character by character, starting from the first position and continuing until either the

inequality becomes false or the check reaches the last position. Since i > ri−1, we set (li, ri)

to (i, i+ Li − 1), i.e., the new L-box starting at position i.

2. If i ≤ ri−1, then T [i] is contained in substring T [li−1..ri−1] such that T [li−1..ri−1] ≈ P [1..ri−1−

li−1+1], which means T [i..ri−1] ≈ P [i−li−1+1..ri−1−li−1+1] by Lemma 1. Let β = T [i..ri−1],

i′ = i − li−1 + 1 and z = Zi′(P ). Then, β ≈ P [i′..i′ + |β| − 1] and P [i′..i′ + z − 1] ≈ P [1..z]

(by the definition of z). Thus, β[1..ℓ] ≈ P [1..ℓ] where ℓ = min(|β|, z), i.e., it is guaranteed

that Li is at least min(|β|, z). See Figure 1.

(a) If z < |β|, then Ti[z + 1] is contained in β and Ti[1..z + 1] ≈ P [i′..i′ + z]. Since
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(i) Case 2(a) (ii) Case 2(b)

Figure 1: Illustration of several cases under the condition i ≤ ri−1.

P [i′..i′ + z] ̸≈ P [1..z + 1] by the definition of z = Zi′(P ), Ti[1..z + 1] ̸≈ P [1..z + 1] and

thus Li = z. Also, since the end position i+ z− 1 of the new L-box starting at position

i is to the left of ri−1 (= i+ |β| − 1), we set (li, ri) as (li−1, ri−1).

(b) If z > |β|, then P [|β|+1] is contained in P [1..z] and P [1..|β|+1] ≈ P [i′..i′ + |β|]. Since

P [i′..i′ + |β|] ̸≈ Ti[1..|β|+1] by the definition of β, Ti[1..|β|+1] ̸≈ P [1..|β|+1] and thus

Li = |β|. Also, since the end position i+ |β| − 1 of the new L-box starting at position i

is equal to ri−1, we set (li, ri) as (li−1, ri−1) or (i, i+ Li − 1).

(c) If z = |β|, then Li can be larger than z = ri−1 − i + 1. Thus, we compute Li by

explicitly checking the inequality (1) for Ti and P character by character, starting from

the position z + 1 and continuing until either the inequality becomes false or the check

reaches the last position. Also, since the end position i + Li − 1 of the new L-box

starting at position i is to the right of or equal to ri−1 (= i+ |β| − 1), we set (li, ri) as

(i, i+ Li − 1).

We analyze the running time for computing all Li’s. Each iteration takes constant time except

for checking the inequality (1). The check ends when the inequality becomes false or the check

reaches the last position. Consider the number xi of times when the inequality is true at iteration

i. If xi > 0, ri increases by xi (and never decreases) from ri−1 (Cases 1 and 2(c)). Since ri ≤ n,

the total sum of xi’s for all iterations is at most n. Therefore, given LMaxP , LMinP , and Z(P ),

all Li’s can be computed in O(n) time.
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Now we analyze the time complexity of our algorithm. We can compute LMaxP and LMinP

in O(m logm) time. (If we can sort the characters of P in linear time, for example, the characters

are drawn from an integer alphabet, we can compute LMaxP and LMinP in O(m) time.) Then,

Z(P ) and Li’s can be computed in O(m) time and O(n) time, respectively. Also, Ri’s can be

computed similarly using the reversed strings of P and T . For each position i (1 ≤ i ≤ n−m+1),

given Li and Ri, we can determine whether Ti is partitioned isomorphic to P and compute the

range of partition positions in constant time. Therefore, we obtain the following theorem.

Theorem 5. Given T of length n and P of length m, the order-preserving pattern matching prob-

lem with partition can be solved in O(n + m logm) time. If the characters of P can be sorted in

linear time, the problem can be solved in O(n+m) time.

4. Conclusion

We have introduced the concept of partitioned order-isomorphism as a novel criterion for ap-

proximate order-isomorphism. This approximation criterion is significant not only because it can

be utilized in analyzing time series data where errors may occur, but also because it provides a

criterion for approximation that is difficult to consider in classical pattern matching based solely

on comparing character values. Using this criterion, we have defined the OPPM problem with

partition and presented an efficient algorithm for solving it. Although we currently focus on the

case where a string is partitioned into two substrings, our definition can readily be extended to

cases where the string is partitioned into three or more substrings.
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